Newer
Older
Digital_Repository / Misc / Mass downloads / UTas / 2580.html
  1. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  2. "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
  3. <html>
  4. <head>
  5. <title>UTas ePrints - Hydraulic design of leaves: insights from rehydration kinetics</title>
  6. <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script>
  7. <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style>
  8. <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style>
  9. <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  10. <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  11. <link rel="Top" href="http://eprints.utas.edu.au/" />
  12. <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" />
  13. <meta content="Zwieniecki, Maciej A." name="eprints.creators_name" />
  14. <meta content="Brodribb, Tim J." name="eprints.creators_name" />
  15. <meta content="Holbrook, N. M." name="eprints.creators_name" />
  16. <meta content="" name="eprints.creators_id" />
  17. <meta content="Timothy.Brodribb@utas.edu.au" name="eprints.creators_id" />
  18. <meta content="" name="eprints.creators_id" />
  19. <meta content="article" name="eprints.type" />
  20. <meta content="2007-11-29 00:35:55" name="eprints.datestamp" />
  21. <meta content="2008-01-08 15:30:00" name="eprints.lastmod" />
  22. <meta content="show" name="eprints.metadata_visibility" />
  23. <meta content="Hydraulic design of leaves: insights from
  24. rehydration kinetics" name="eprints.title" />
  25. <meta content="pub" name="eprints.ispublished" />
  26. <meta content="270402" name="eprints.subjects" />
  27. <meta content="270400" name="eprints.subjects" />
  28. <meta content="restricted" name="eprints.full_text_status" />
  29. <meta content="venation pattern; bundle sheath extension; transpiration
  30. stream; hydraulic compartmentalization." name="eprints.keywords" />
  31. <meta content="&quot;The definitive version is available at www.blackwell-synergy.com&quot;
  32. " name="eprints.note" />
  33. <meta content="We examined the leaf hydraulic design in 10 species based on
  34. their rehydration kinetics. In all cases, a biphasic response
  35. described the temporal pattern of water uptake, with time
  36. constants of ~30 to 800 s and ~800 to 8000 s. The time constants
  37. of the fast phase were significantly shorter in the six
  38. angiosperms (30 to 110 s) compared with the two singleveined
  39. conifer species (>400 s) examined, while the two
  40. multi-veined gymnosperm species, Gnetum gnemon and
  41. Ginkgo biloba, had time constants for the fast phase of
  42. ~150 s. Among angiosperm species, the fast phase constituted
  43. 50–90% of the total water absorbed, whereas in gymnosperms
  44. 70–90% of the water uptake could be assigned to
  45. the slow phase. In the four gymnosperms, the relative water
  46. uptake corresponding to the fast phase matched to a good
  47. degree the relative volume of the venation and bundle
  48. sheath extension; whereas in the angiosperm species, the
  49. relatively larger water influx during the fast phase was
  50. similar in relative volume to the combined venation, bundle
  51. sheath extension, epidermis and (in four species) the spongy
  52. mesophyll. This suggests a general trend from a design in
  53. which the epidermis is weakly connected to the veins (all
  54. four gymnosperms), to a design with good hydraulic connection
  55. between epidermis and veins that largely bypasses the
  56. mesophyll (four of six angiosperms), to a design in which
  57. almost the entire leaf appears to function as a single pool." name="eprints.abstract" />
  58. <meta content="2007" name="eprints.date" />
  59. <meta content="Plant, Cell and Environment" name="eprints.publication" />
  60. <meta content="30" name="eprints.volume" />
  61. <meta content="8" name="eprints.number" />
  62. <meta content="910-921" name="eprints.pagerange" />
  63. <meta content="10.1111/j.1365-3040.2007.001681.x" name="eprints.id_number" />
  64. <meta content="TRUE" name="eprints.refereed" />
  65. <meta content="0140-7791" name="eprints.issn" />
  66. <meta content="http://dx.doi.org/10.1111/j.1365-3040.2007.001681.x" name="eprints.official_url" />
  67. <meta content="Berkowitz G.A. &amp; Kroll K.S. (1988) Acclimation of photosynthesis
  68. in Zea mays to low water potentials involves alterations in protoplast
  69. volume reduction. Planta 175, 374–379.
  70. Boyer J.S. (1974) Water transport in plants: mechanism of
  71. apparent changes in resistance during absorption. Planta 117,
  72. 187–207.
  73. Boyer J.S. (1977) Regulation of water movement in whole plants.
  74. In Integration ofActivity in the Higher Plant (ed.D.H. Jennings),
  75. pp. 455–470. Cambridge University Press, Cambridge, UK.
  76. Boyer J.S. (1985) Water transport. Annual Review of Plant Physiology
  77. 36, 473–516.
  78. Brodribb T.J.&amp;Holbrook N.M. (2003) Stomatal closure during leaf
  79. dehydration, correlation with other leaf physiological traits.
  80. Plant Physiology 132, 2166–2173.
  81. Brodribb T.J. &amp; Holbrook N.M. (2004) Stomatal protection against
  82. hydraulic failure: a comparison of coexisting ferns and angiosperms.
  83. New Phytologist 162, 663–670.
  84. Brodribb T.J. &amp; Holbrook N.M. (2005) Water stress deforms tracheids
  85. peripheral to the leaf vein of a tropical conifer. Plant
  86. Physiology 137, 1139–1146.
  87. Brodribb T., Holbrook N., Zwieniecki M. &amp; Palma B. (2005)
  88. Leaf hydraulic capacity in ferns, conifers and angiosperms:
  89. impacts on photosynthetic maxima. New Phytologist 165, 839–
  90. 846.
  91. Buckley T.N.,Mott K.A. &amp; Farquhar G.D. (2003) A hydromechanical
  92. and biochemical model of stomatal conductance. Plant, Cell
  93. &amp; Environment 26, 1767–1785.
  94. Canny M.J. (1993) The transpiration stream in the leaf apoplast –
  95. water and solutes. PhilosophicalTransactions,Series B-Biological
  96. Sciences 341, 87–100.
  97. Canny M. (1995) Apoplastic water and solute movement – new
  98. rules for an old space. Annual Review of Plant Physiology and
  99. Plant Molecular Biology 46, 215–236.
  100. Chrispeels M.J. &amp; Maurel C. (1994) Aquaporins: the molecular
  101. basis of facilitated water movement through living plant cells?
  102. Plant Physiology 105, 9–13.
  103. Chrispeels M., Morillon R., Maurel C., Gerbeau P., Kjellbom P.
  104. &amp; Johansson I. (2001) Aquaporins of plants: structure, function,
  105. regulation, and role in plant water relations. Current Topics in
  106. Membranes 51, 277–334.
  107. Cochard H., Froux F.,Mayr F.F.S. &amp; Coutand C. (2004) Xylem wall
  108. collapse in water-stressed pine needles. Plant Physiology 134,
  109. 401–408.
  110. Cruiziat P., Tyree M., Bodet C. &amp; Logullo M. (1980) Kinetics of
  111. rehydration of detached sunflower leaves following substantial
  112. water-loss. New Phytologist 84, 293–306.
  113. Esau K. (1977) Anatomy of Seed Plants, 2nd edn. John Wiley &amp;
  114. Sons, New York, NY, USA.
  115. Fahn A. (1990) Plant Anatomy, 4th edn. Pergamon Press, New
  116. York, NY, USA.
  117. Fricke W. (2000) Water movement between epidermal cells of
  118. barley leaves – a symplastic connection? Plant, Cell &amp; Environment
  119. 23, 991–997.
  120. Hacke U.G., Sperry J.S.,Wheeler J.K. &amp; Castro L. (2006) Scaling of
  121. angiosperm xylem structure with safety and efficiency. Tree
  122. Physiology 26, 689–701.
  123. Matthews M.A. &amp; Boyer J.S. (1984) Acclimation of photosynthesis
  124. to low leaf water potentials. Plant Physiology 74, 161–166.
  125. Milburn J. (1966) The conduction of sap: 1.Water conduction and
  126. cavitation in water stressed leaves. Planta 96, 34–42.
  127. NardiniA., Gortan E. &amp; Salleo S. (2005) Hydraulic efficiency of the
  128. leaf venation system in sun- and shade-adapted species. Functional
  129. Plant Biology 32, 953–961.
  130. Pickard W.F. (1982) Distribution of evaporation in the substomatal
  131. chamber, the possibility of transpiration-linked pore
  132. narrowing, and the pathway of water near the site of evaporation.
  133. Annals of Botany 49, 545–548.
  134. Pittermann J., Sperry J.S., Hacke U.G., Wheeler J.K. &amp; Sikkema
  135. E.H. (2005) Torus-margo pits help conifers compete with
  136. angiosperms. Science 310, 1924–1924.
  137. Ruzin S.E. (1999) Plant Microtechnique and Microscopy. Oxford
  138. University Press, New York, NY, USA.
  139.  
  140.  
  141. Sack L. &amp; Holbrook N.M. (2006) Leaf hydraulics. Annual Review
  142. of Plant Biology 57, 361–381.
  143. Sack L., Cowan P., Jaikumar N. &amp; Holbrook N. (2003) The
  144. ‘hydrology’ of leaves: coordination of structure and function in
  145. temperate woody species. Plant, Cell &amp; Environment 26, 1343–
  146. 1356.
  147. Sack L., Streeter C.M. &amp; Holbrook N.M. (2004) Hydraulic analysis
  148. of water flow through leaves of sugar maple and red oak. Plant
  149. Physiology 134, 1824–1833.
  150. Sack L., Tyree M.T. &amp; Holbrook N.M. (2005) Leaf hydraulic architecture
  151. correlates with regeneration irradiance in tropical rainforest
  152. trees. New Phytologist 167, 403–413.
  153. Schuepp P.H. (1993) Tansley Review No. 59: leaf boundary layers.
  154. New Phytologist 125, 477–507.
  155. Singsaas E., Laporte M., Shi J., Monson R., Bowling D., Johnson K.,
  156. Lerdau M., Jasentuliytana A. &amp; Sharkey T. (1999) Kinetics of
  157. leaf temperature fluctuation affect isoprene emission from red
  158. oak (Quercus rubra) leaves. Tree Physiology 19, 917–924.
  159. Sowinski P., Rudzinska-Langwald A. &amp; Kobus P. (2003) Changes in
  160. plasmodesmata frequency in vascular bundles of maize seedling
  161. leaf induced by growth at sub-optimal temperatures in relation
  162. to photosynthesis and assimilate export. Environmental and
  163. Experimental Botany 50, 183–196.
  164. Tang A.C., Kawamitsu Y., Kanechi M. &amp; Boyer J.S. (2002) Photosynthetic
  165. oxygen evolution at low water potential in leaf discs
  166. lacking an epidermis. Annals of Botany 89, 861–870.
  167. Tezara W., Mitchell V., Driscoll S.P. &amp; Lawlor D.W. (2002) Effects
  168. of water deficit and its interaction with CO2 supply on the biochemistry
  169. and physiology of photosynthesis in sunflower. Journal
  170. of Experimental Botany 53, 1781–1791.
  171. Tomlinson P.B. &amp; Fisher J.B. (2005) Development of nonlignified
  172. fibers in leaves of Gnetum gnemon (Gnetales). American Journal
  173. of Botany 92, 383–389.
  174. Tyree M.T. &amp; Cheung Y.N.S. (1977) Resistance to water flow in
  175. Fagus grandifolia leaves. Canadian Journal of Botany 55, 2591–
  176. 2599.
  177. Tyree M., Cruiziat P., Benis M., Logullo M. &amp; Salleo S. (1981) The
  178. kinetics of rehydration of detached sunflower leaves from different
  179. initial water deficits. Plant, Cell &amp; Environment 4, 309–317.
  180. Wang X. &amp; Yakir D. (1995) Temporal and spatial variations in the
  181. oxygen-18 content of leaf water in different plant species. Plant,
  182. Cell &amp; Environment 18, 1377–1385.
  183. Weatherley P. (1963) The pathway of water movement across the
  184. root cortex and leaf mesophyll in transpiring plants. In TheWater
  185. Relations of Plants (eds A. Rutter &amp; F. Whitehead), pp. 85–100.
  186. Blackwell, London, UK.
  187. Yakir D., DeNiro M. &amp; Rundel P. (1989) Isotopic inhomogeneity of
  188. leaf water – evidence and implications for the use of isotopic
  189. signals transduced by plants. Geochemica at Cosmochimica Acta
  190. 53, 2769–2773.
  191. Yakir D., DeNiro M.J. &amp; Gat J.R. (1990) Natural deuterium and
  192. oxygen-18 enrichment in leaf water of cotton plants grown under
  193. wet and dry conditions: evidence for water compartmentation
  194. and its dynamics. Plant, Cell &amp; Environment 13, 49–56.
  195. Zwieniecki M.A., Melcher P.J., Boyce C.K., Sack L. &amp; Holbrook
  196. N.M. (2002) The hydraulic architecture of the leaf venation in
  197. Laurus nobilis L. Plant, Cell &amp; Environment 25, 1445–1450.
  198. Zwieniecki M.A., Boyce C.K. &amp; Holbrook N.M. (2004) Hydraulic
  199. limitations imposed by crown placement determine final size and
  200. shape of Quercus rubra L. leaves. Plant, Cell &amp; Environment 27,
  201. 357–365." name="eprints.referencetext" />
  202. <meta content="Zwieniecki, Maciej A. and Brodribb, Tim J. and Holbrook, N. M. (2007) Hydraulic design of leaves: insights from rehydration kinetics. Plant, Cell and Environment, 30 (8). pp. 910-921. ISSN 0140-7791" name="eprints.citation" />
  203. <meta content="http://eprints.utas.edu.au/2580/1/Zweiniecki_Brod.pdf" name="eprints.document_url" />
  204. <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" />
  205. <meta content="Hydraulic design of leaves: insights from
  206. rehydration kinetics" name="DC.title" />
  207. <meta content="Zwieniecki, Maciej A." name="DC.creator" />
  208. <meta content="Brodribb, Tim J." name="DC.creator" />
  209. <meta content="Holbrook, N. M." name="DC.creator" />
  210. <meta content="270402 Plant Physiology" name="DC.subject" />
  211. <meta content="270400 Botany" name="DC.subject" />
  212. <meta content="We examined the leaf hydraulic design in 10 species based on
  213. their rehydration kinetics. In all cases, a biphasic response
  214. described the temporal pattern of water uptake, with time
  215. constants of ~30 to 800 s and ~800 to 8000 s. The time constants
  216. of the fast phase were significantly shorter in the six
  217. angiosperms (30 to 110 s) compared with the two singleveined
  218. conifer species (>400 s) examined, while the two
  219. multi-veined gymnosperm species, Gnetum gnemon and
  220. Ginkgo biloba, had time constants for the fast phase of
  221. ~150 s. Among angiosperm species, the fast phase constituted
  222. 50–90% of the total water absorbed, whereas in gymnosperms
  223. 70–90% of the water uptake could be assigned to
  224. the slow phase. In the four gymnosperms, the relative water
  225. uptake corresponding to the fast phase matched to a good
  226. degree the relative volume of the venation and bundle
  227. sheath extension; whereas in the angiosperm species, the
  228. relatively larger water influx during the fast phase was
  229. similar in relative volume to the combined venation, bundle
  230. sheath extension, epidermis and (in four species) the spongy
  231. mesophyll. This suggests a general trend from a design in
  232. which the epidermis is weakly connected to the veins (all
  233. four gymnosperms), to a design with good hydraulic connection
  234. between epidermis and veins that largely bypasses the
  235. mesophyll (four of six angiosperms), to a design in which
  236. almost the entire leaf appears to function as a single pool." name="DC.description" />
  237. <meta content="2007" name="DC.date" />
  238. <meta content="Article" name="DC.type" />
  239. <meta content="PeerReviewed" name="DC.type" />
  240. <meta content="application/pdf" name="DC.format" />
  241. <meta content="http://eprints.utas.edu.au/2580/1/Zweiniecki_Brod.pdf" name="DC.identifier" />
  242. <meta content="http://dx.doi.org/10.1111/j.1365-3040.2007.001681.x" name="DC.relation" />
  243. <meta content="Zwieniecki, Maciej A. and Brodribb, Tim J. and Holbrook, N. M. (2007) Hydraulic design of leaves: insights from rehydration kinetics. Plant, Cell and Environment, 30 (8). pp. 910-921. ISSN 0140-7791" name="DC.identifier" />
  244. <meta content="http://eprints.utas.edu.au/2580/" name="DC.relation" />
  245. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2580/BibTeX/epprod-eprint-2580.bib" title="BibTeX" type="text/plain" />
  246. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2580/ContextObject/epprod-eprint-2580.xml" title="OpenURL ContextObject" type="text/xml" />
  247. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2580/ContextObject::Dissertation/epprod-eprint-2580.xml" title="OpenURL Dissertation" type="text/xml" />
  248. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2580/ContextObject::Journal/epprod-eprint-2580.xml" title="OpenURL Journal" type="text/xml" />
  249. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2580/DC/epprod-eprint-2580.txt" title="Dublin Core" type="text/plain" />
  250. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2580/DIDL/epprod-eprint-2580.xml" title="DIDL" type="text/xml" />
  251. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2580/EndNote/epprod-eprint-2580.enw" title="EndNote" type="text/plain" />
  252. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2580/HTML/epprod-eprint-2580.html" title="HTML Citation" type="text/html; charset=utf-8" />
  253. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2580/METS/epprod-eprint-2580.xml" title="METS" type="text/xml" />
  254. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2580/MODS/epprod-eprint-2580.xml" title="MODS" type="text/xml" />
  255. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2580/RIS/epprod-eprint-2580.ris" title="Reference Manager" type="text/plain" />
  256. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2580/Refer/epprod-eprint-2580.refer" title="Refer" type="text/plain" />
  257. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2580/Simple/epprod-eprint-2580text" title="Simple Metadata" type="text/plain" />
  258. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2580/Text/epprod-eprint-2580.txt" title="ASCII Citation" type="text/plain; charset=utf-8" />
  259. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2580/XML/epprod-eprint-2580.xml" title="EP3 XML" type="text/xml" />
  260.  
  261. </head>
  262. <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')">
  263. <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div>
  264.  
  265.  
  266.  
  267.  
  268. <table width="795" border="0" cellspacing="0" cellpadding="0">
  269. <tr>
  270. <td><script language="JavaScript1.2">mmLoadMenus();</script>
  271. <table border="0" cellpadding="0" cellspacing="0" width="795">
  272. <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" -->
  273. <tr>
  274. <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td>
  275. <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td>
  276. <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td>
  277. <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td>
  278. <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td>
  279. <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td>
  280. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  281. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  282. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  283. <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td>
  284. <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td>
  285. <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td>
  286. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  287. </tr>
  288. <tr>
  289. <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td>
  290. <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td>
  291. </tr>
  292. <tr>
  293. <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td>
  294. <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td>
  295. <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td>
  296. <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td>
  297. </tr>
  298. <tr>
  299. <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td>
  300. <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td>
  301. <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td>
  302. </tr>
  303. <tr>
  304. <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td>
  305. <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td>
  306. </tr>
  307. <tr>
  308. <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td>
  309. <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td>
  310. <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td>
  311. <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td>
  312. <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td>
  313. <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td>
  314. <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td>
  315. <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td>
  316. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  317. </tr>
  318. <tr>
  319. <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td>
  320. <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td>
  321. <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td>
  322. </tr>
  323. <tr>
  324. <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td>
  325. <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td>
  326. <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td>
  327. </tr>
  328. </table></td>
  329. </tr>
  330. <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr>
  331. <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td>
  332. <td align="right" style="white-space: nowrap">
  333. <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline">
  334. <input class="ep_tm_searchbarbox" size="20" type="text" name="q" />
  335. <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" />
  336. <input type="hidden" name="_order" value="bytitle" />
  337. <input type="hidden" name="basic_srchtype" value="ALL" />
  338. <input type="hidden" name="_satisfyall" value="ALL" />
  339. </form>
  340. </td>
  341. </tr></table></td></tr>
  342. <tr>
  343. <td class="toplinks"><!-- InstanceBeginEditable name="content" -->
  344.  
  345.  
  346. <div align="center">
  347. <table width="720" class="ep_tm_main"><tr><td align="left">
  348. <h1 class="ep_tm_pagetitle">Hydraulic design of leaves: insights from rehydration kinetics</h1>
  349. <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Zwieniecki, Maciej A.</span> and <span class="person_name">Brodribb, Tim J.</span> and <span class="person_name">Holbrook, N. M.</span> (2007) <xhtml:em>Hydraulic design of leaves: insights from rehydration kinetics.</xhtml:em> Plant, Cell and Environment, 30 (8). pp. 910-921. ISSN 0140-7791</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a href="http://eprints.utas.edu.au/2580/1/Zweiniecki_Brod.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a></td><td valign="top"><a href="http://eprints.utas.edu.au/2580/1/Zweiniecki_Brod.pdf"><span class="ep_document_citation">PDF</span></a> - Full text restricted - Requires a PDF viewer<br />764Kb</td><td><form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/request_doc"><input accept-charset="utf-8" value="3388" name="docid" type="hidden" /><div class=""><input value="Request a copy" name="_action_null" class="ep_form_action_button" onclick="return EPJS_button_pushed( '_action_null' )" type="submit" /> </div></form></td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://dx.doi.org/10.1111/j.1365-3040.2007.001681.x">http://dx.doi.org/10.1111/j.1365-3040.2007.001681.x</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">We examined the leaf hydraulic design in 10 species based on&#13;
  350. their rehydration kinetics. In all cases, a biphasic response&#13;
  351. described the temporal pattern of water uptake, with time&#13;
  352. constants of ~30 to 800 s and ~800 to 8000 s. The time constants&#13;
  353. of the fast phase were significantly shorter in the six&#13;
  354. angiosperms (30 to 110 s) compared with the two singleveined&#13;
  355. conifer species (&gt;400 s) examined, while the two&#13;
  356. multi-veined gymnosperm species, Gnetum gnemon and&#13;
  357. Ginkgo biloba, had time constants for the fast phase of&#13;
  358. ~150 s. Among angiosperm species, the fast phase constituted&#13;
  359. 50–90% of the total water absorbed, whereas in gymnosperms&#13;
  360. 70–90% of the water uptake could be assigned to&#13;
  361. the slow phase. In the four gymnosperms, the relative water&#13;
  362. uptake corresponding to the fast phase matched to a good&#13;
  363. degree the relative volume of the venation and bundle&#13;
  364. sheath extension; whereas in the angiosperm species, the&#13;
  365. relatively larger water influx during the fast phase was&#13;
  366. similar in relative volume to the combined venation, bundle&#13;
  367. sheath extension, epidermis and (in four species) the spongy&#13;
  368. mesophyll. This suggests a general trend from a design in&#13;
  369. which the epidermis is weakly connected to the veins (all&#13;
  370. four gymnosperms), to a design with good hydraulic connection&#13;
  371. between epidermis and veins that largely bypasses the&#13;
  372. mesophyll (four of six angiosperms), to a design in which&#13;
  373. almost the entire leaf appears to function as a single pool.</p></div><table style="margin-bottom: 1em" cellpadding="3" class="not_ep_block" border="0"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Additional Information:</th><td valign="top" class="ep_row">"The definitive version is available at www.blackwell-synergy.com"&#13;
  374. </td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">venation pattern; bundle sheath extension; transpiration&#13;
  375. stream; hydraulic compartmentalization.</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/270402.html">270000 Biological Sciences &gt; 270400 Botany &gt; 270402 Plant Physiology</a><br /><a href="http://eprints.utas.edu.au/view/subjects/270400.html">270000 Biological Sciences &gt; 270400 Botany</a></td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">2580</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Scholarly Publications Librarian</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">29 Nov 2007 11:35</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">09 Jan 2008 02:30</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=2580;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&amp;eprintid=2580">item control page</a></p>
  376. </td></tr></table>
  377. </div>
  378.  
  379.  
  380.  
  381. <!-- InstanceEndEditable --></td>
  382. </tr>
  383. <tr>
  384. <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" -->
  385. <table width="795" border="0" align="left" cellpadding="0" class="footer">
  386. <tr valign="top">
  387. <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td>
  388. </tr>
  389. <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr>
  390. <tr valign="top">
  391. <td width="68%" class="footer">Authorised by the University Librarian<br />
  392. © University of Tasmania ABN 30 764 374 782<br />
  393. <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright &amp; Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a>  </td>
  394. <td width="32%"><div align="right">
  395. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p>
  396. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br />
  397. </a></p>
  398. </div></td>
  399. </tr>
  400. <tr valign="top">
  401. <td><p>  </p></td>
  402. <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td>
  403. </tr>
  404. </table>
  405. <!-- #EndLibraryItem -->
  406. <div align="center"></div></td>
  407. </tr>
  408. </table>
  409.  
  410. </body>
  411. </html>